尊敬的顾客

感谢您使用本公司生产的产品。在初次使用该仪器前,请您详细地阅读使用说明书,将可帮助您正确使用该仪器。

我们的宗旨是不断地改进和完善公司的产品,因此您所使用的 仪器可能与使用说明书有少许差别。若有改动,我们不一定能通知 到您,敬请谅解!如有疑问,请与公司售后服务部联络,我们定会 满足您的要求。

由于输入输出端子、测试柱等均有可能带电压,您在插拔测试线、电源插座时,会产生电火花,小心电击,避免触电危险,注意人身安全!

◆ 慎重保证

本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。一年(包括一年)内如产品出现缺陷,实行免费维修。一年以上如产品出现缺陷,实行有偿终身维修。

◆ 安全要求

请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。为了避免可能发生的危险,本产品只可在规定的范围内使用。

只有合格的技术人员才可执行维修。

—防止火灾或人身伤害

使用适当的电源线。只可使用本产品专用、并且符合本产品规格的电源线。

正确地连接和断开。当测试导线与带电端子连接时,请勿随意连接或断开测试导线。

产品接地。本产品除通过电源线接地导线接地外,产品外壳的接地柱必须接地。 为了防止电击,接地导体必须与地面相连。在与本产品输入或输出终端连接前, 应确保本产品已正确接地。

注意所有终端的额定值。为了防止火灾或电击危险,请注意本产品的所有额定值和标记。在对本产品进行连接之前,请阅读本产品使用说明书,以便进一步了解有关额定值的信息。

请勿在无仪器盖板时操作。如盖板或面板已卸下,请勿操作本产品。

使用适当的保险丝。只可使用符合本产品规定类型和额定值的保险丝。

避免接触裸露电路和带电金属。产品有电时,请勿触摸裸露的接点和部位。

在有可疑的故障时,请勿操作。如怀疑本产品有损坏,请本公司维修人员进 行检查, 切勿继续操作。

请勿在潮湿环境下操作。

请勿在易爆环境中操作。

保持产品表面清洁和干燥。

一安全术语

警告: 警告字句指出可能造成人身伤亡的状况或做法。

小心: 小心字句指出可能造成本产品或其它财产损坏的状况或做法。

目 录

一.安全规则及注意事项	4
二.简介	4
三.量程及精度	5
四.技术规格	6
五. 仪表结构	7
六.测量原理	8
七. 操作方法	8
1. 开关机	8
2. 电池电压检查	8
3. 直流电压测试	8
4. 交流电压测试	9
5. 绝缘电阻测试	9
6. GUARD 保护线的使用	10
7. 极化指数 (PI) 和吸收比(DAR)	. 11
8. 背光控制	. 12
9. 报警设置	. 13
10. 数据锁定/存储	. 13
11. 数据查阅/删除	. 13
八. 电池说明	. 14
九. 装箱单	. 14

一.安全规则及注意事项

感谢您购买了本公司**数字式高压绝缘电阻表**,在你初次使用该仪器前,为避免 发生可能的触电或人身伤害,请一定:**详细阅读并严格遵守本手册所列出的安全规 则及注意事项。**

任何情况下,使用本仪表应特别注意安全。

- ◆ 本仪表根据 IEC61010 安全规格进行设计、生产、检验。
- ◆ 任何情况下,使用本仪表应特别注意安全。
- ◇ 测量时,移动电话等高频信号发生器请勿在仪表旁使用,以免引起误差。
- ◆ 注意本仪表机身的标贴文字及符号。
- ◆ 使用前应确认仪表及附件完好,仪表、测试线绝缘层无破损、无裸露、 无断线才能使用。
- ◇ 测量过程中,严禁接触裸露导体及正在测量的回路。
- ◆ 确认导线的连接插头已紧密地插入仪表接口内。
- ◇ 请勿在易燃性场所测量,火花可能引起爆炸。
- ◆ 仪表在使用中,机壳或测试线发生断裂而造成金属外露时,请停止使用。
- ◇ 请勿于高温潮湿,有结露的场所及日光直射下长时间放置和存放仪表。
- ◆ 给仪表更换电池时,请确认测试线已移离仪表,仪表处于关机状态。
- ◆ 仪表显示电池电压低符号" □ ",应及时充电,否则会引起误差。
- ◇ 测量过程中严禁进行充电或者进行数据传输操作。
- ◆ 注意本仪表所规定的测量范围及使用环境。
- ◆ 使用、拆卸、校准、维修本仪表,必须由有授权资格的人员操作。
- ◆ 由于本仪表原因,继续使用会带来危险时,应立即停止使用,并马上封存,由有授权资格的机构处理。
- ◆ 仪表及手册中的"⚠"安全警告标志,使用者必须严格依照本手册内容进行安全操作。
- ◆ 仪表输出高压,请务必连接好测试线手离开测试线后才按测试键进行测试, 否则有触电危险。
- ◆ 测试完成后,先等待一分钟放电完成后再移除测试线,移除测试线时先移除仪表端的测试线再把测试线收好。

二.简介

数字式绝缘电阻测试仪又名**兆欧表、高压绝缘电阻测试仪**等,用于绝缘电阻的测试。本仪表具有 LCD 大屏幕灰白背光显示、数据存储、数据查阅、报警、自动关机等功能。同时还具备测量直流电压交流电压吸收比和极化指数功能。整机美观高档,量程宽广,分辨率高,操作便捷,携带方便,准确、可靠、性能稳定,抗干扰能力强。而且具有防震、防尘、防潮结构,是电信、电力、气象、机房、油田、机电安装和维修以及利用电力作为工业动力或能源的工业企业部门常用而必不可少的

仪表。它适用于测量各种绝缘材料的电阻值及变压器、电机、电缆及电器设备等的绝缘电阻。

数字绝缘电阻表由中大规模集成电路组成。本表输出功率大,输出电压等级多 (有 6 个电压等级)。 额定绝缘测试电压范围 $250V\sim10kV$, 绝缘电阻测量范围 0.01M $\Omega\sim2000G\Omega$ 。直流电压测量范围 $0\sim1000V$, 交流电压测量范围 $0\sim750V$ 。

三.量程及精度

测量功能	输出电压	测量范围	精度	分辨率
		0.1 M Ω \sim 10M Ω	±3%rdg±5dgt	$0.01 \text{M}\Omega$
		$10\mathrm{M}\Omega{\sim}100\mathrm{M}\Omega$	±3%rdg±5dgt	$0.1M\Omega$
	$250V(\pm 10\%)$	$100 \mathrm{M}\Omega \sim \! 1000 \mathrm{M}\Omega$	±3%rdg±5dgt	1ΜΩ
		$1G\Omega{\sim}10G\Omega$	\pm 5%rdg \pm 5dgt	0.01G Ω
		$10G\Omega{\sim}30G\Omega$	±20%rdg±5dgt	0. 1G Ω
		$0.2\mathrm{M}\Omega\!\sim\!\!20\mathrm{M}\Omega$	±3%rdg±5dgt	$0.01 \text{M}\Omega$
		$20\mathrm{M}\Omega{\sim}200\mathrm{M}\Omega$	$\pm 3\%$ rdg ± 5 dgt	$0.1 M\Omega$
	500V (±10%)	$200\mathrm{M}\Omega{\sim}2000\mathrm{M}\Omega$	$\pm 3\%$ rdg ± 5 dgt	1ΜΩ
		$2G\Omega{\sim}20G\Omega$	±20%rdg±5dgt	0.01G Ω
		$20G\Omega{\sim}50G\Omega$	±20%rdg±5dgt	0. 1G Ω
		$0.5 \mathrm{M}\Omega \sim \! 50 \mathrm{M}\Omega$	$\pm 3\%$ rdg ± 5 dgt	$0.01 \text{M}\Omega$
		$50\mathrm{M}\Omega{\sim}500\mathrm{M}\Omega$	±3%rdg±5dgt	$0.1 M\Omega$
	$1000V(\pm 10\%)$	$500\mathrm{M}\Omega{\sim}5000\mathrm{M}\Omega$	±3%rdg±5dgt	1MΩ
		$5G\Omega{\sim}50G\Omega$	±20%rdg±5dgt	0.01G Ω
		$50G\Omega{\sim}100G\Omega$	±20%rdg±5dgt	0. 1G Ω
 绝缘电阻	2500V(±10%)	$1\mathrm{M}\Omega{\sim}10\mathrm{M}\Omega$	±3%rdg±5dgt	$0.01 \text{M}\Omega$
- 29 - 19 - 19 - 19 - 19 - 19 - 19 - 19 		$10\mathrm{M}\Omega{\sim}100\mathrm{M}\Omega$	$\pm 3\%$ rdg ± 5 dgt	$0.1M\Omega$
		$100\mathrm{M}\Omega{\sim}1000\mathrm{M}\Omega$	±3%rdg±5dgt	$1 \text{M} \Omega$
		$1\mathrm{G}\Omega\sim\!10\mathrm{G}\Omega$	±10%rdg±5dgt	0.01G Ω
		$10\mathrm{G}\Omega$ \sim $100\mathrm{G}\Omega$	±20%rdg±5dgt	0. 1G Ω
		$100\mathrm{G}\Omega$ \sim 3000Ω	±20%rdg±5dgt	1G Ω
	5000V(±10%)	$2\mathrm{M}\Omega$ \sim $20\mathrm{M}\Omega$	±3%rdg±5dgt	$0.01 \text{M}\Omega$
		$20\mathrm{M}\Omega{\sim}200\mathrm{M}\Omega$	±3%rdg±5dgt	0.1ΜΩ
		$200\mathrm{M}\Omega{\sim}2000\mathrm{M}\Omega$	±3%rdg±5dgt	1ΜΩ
		$2\mathrm{G}\Omega\sim\!20\mathrm{G}\Omega$	±10%rdg±5dgt	0.01G Ω
		$20\mathrm{G}\Omega$ \sim $200\mathrm{G}\Omega$	±20%rdg±5dgt	0.1GΩ
		$200\mathrm{G}\Omega$ \sim $2000\mathrm{G}\Omega$	±20%rdg±5dgt	1G Ω
		$5\mathrm{M}\Omega\sim\!50\mathrm{M}\Omega$	±3%rdg±5dgt	$0.01 \text{M}\Omega$
		$50\mathrm{M}\Omega{\sim}500\mathrm{M}\Omega$	±3%rdg±5dgt	0.1ΜΩ
	$10KV (\pm 10\%)$	$500\mathrm{M}\Omega$ \sim $5000\mathrm{M}\Omega$	±5%rdg±5dgt	1ΜΩ
		$5\mathrm{G}\Omega\sim\!50\mathrm{G}\Omega$	±10%rdg±5dgt	0.01G Ω
		$50\mathrm{G}\Omega$ \sim $500\mathrm{G}\Omega$	$\pm 20\%$ rdg ± 5 dgt	0. 1G Ω

			$500\mathrm{G}\Omega$ \sim $2000\mathrm{G}\Omega$	$\pm 20\%$ rdg ± 5 dgt	1G Ω
--	--	--	---	----------------------------	------

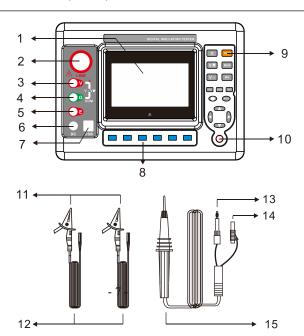
注: 常用电气单位换算

1 T Ω (Tera ohm) =1000G Ω =10¹² Ω

 $1~G~\Omega~~(Giga~ohm~)~=1000M~\Omega=10^9~\Omega$

 $1~M~\Omega~$ (Mega ohm) =1000K Ω =10 $^6~\Omega$

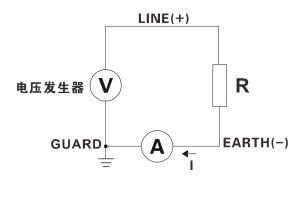
测量功能	测量范围	精度	分辨率
直流电压	DC 0.0V~1000V	$\pm 1.5\%$ rdg ± 3 dgt	0.1V
交流电压	AC 0.0V∼750V	±1.5%rdg±3dgt	0. 1V


四.技术规格

功能	绝缘电阻测试, 电压测试		
基准条件	23℃±5℃,75%rh 以下		
额定电压(V)	250; 500; 1000; 2500; 500	00V; 10KV	
测量电压(V)	额定电压×(1±10%)		
绝缘电阻量程(GΩ)	$0.01 \mathrm{M}\Omega$ \sim $2000 \mathrm{G}\Omega$	分辨率: 0.01M Ω	
直流电压量程	0∼1000V	分辨率: 0.1V	
交流电压量程	0∼750V 分辨率: 0.1V		
输出短路电流	≥5mA(10KV)		
吸收比和极化指数测量	有		
电源	12.6V 充电锂电池		
背光	可控灰白屏背光,适合昏暗场所使用		
显示模式	4 位超大 LCD 显示,灰白屏背光		
LCD 显示尺寸	108mm×65mm		
仪表尺寸	长宽高: 277.2mm×227.5mm×153mm		
USB 接口	具有 USB 接口,软件监控,存储数据可以上传电脑,保存		

	打印		
通讯线	USB 通讯线 1 条		
测试线	高压棒红色 3 米, 高压测试线黑色 1.5 米, 绿线 1.5 米		
数据存储	500 组,闪烁显示"FULL"符号表示存储已满		
数据查阅	数据查阅功能: "MR"符号显示		
溢出显示	超量程溢出功能: "OL"符号显示		
报警功能	测量值未超过报警设定值时发出报警提示		
功耗	待机: 30mA Max(背光关闭), 开机开背光: 42mA Max,		
为代	测量: 300mA Max(背光关闭)		
仪表质量	2750g(含电池)		
电池电压	电池电压不足,显示低电符号"□"		
自动关机	仪表无操作 15 分钟关机		
绝缘电阻	≥50MΩ(测量线路与外壳间)		
耐压	AC3kV/50Hz 1min		
工作温度和湿度	支 −10°C~+50°C<85%RH		
贮存温度和湿度	-15°C∼+55°C <90%RH		
适合安规	IEC61010-1 、 IEC1010-2-31 、 IEC61557-1,5 、		
坦口女观	IEC60529(IP54)、污染等 2、CAT III 300V		

五. 仪表结构


- 1. LCD 显示屏
- 2. LINE 接口
- 3. V接口
- 4. GUARD接口
- 5. EARTH接口
- 6. 充电接口

- 7. USB 接口
- 8. 电压选择键
- 9. 测试键
- 10. 开关机键
- 11. 安全鳄鱼夹
- 12. 测试线 (绿黑各 1 条)
- 13. 高压测试端香蕉插头插 LINE 接口
- 14. 屏蔽线接头插 GUARD 接口 (没有此接头时不需要连接)
- 15. 高压棒测试线

六. 测量原理

绝缘电阻测量采用电压发生器产生一个电压 V, 施加到电阻两端, 通过测量在电阻两端流动电流 Ⅰ. 并根据公式 R=V/Ⅰ 计算接地电阻值 R。

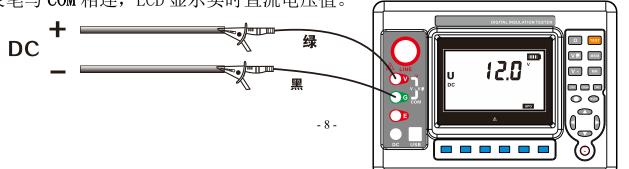
R = V/I

七. 操作方法

1. 开关机

按 POWER 键实现开关机。开机后有下角显示 "APO", 不操作时 15 分钟后自动 关机。

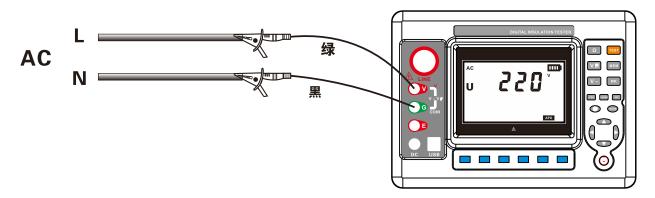
2. 电池电压检查


开机后,如果 LCD 显示电池电压低符号" ____",表示电池电量不足,请及时充电。电池电力充足才能保证测量的精度。

3. 直流电压测试

输入仪表直流电压不能超过 1000V。

测量时按一下 V Ⅲ 按键切换到直流电压测试模式,将绿表笔与 V 端端子相连,黑表笔与 COM 相连,LCD 显示实时直流电压值。



4. 交流电压测试

输入仪表交流电压不能超过 750V。

测量时按一下 $^{\mathbf{V}}$ ~按键切换到交流电压测试模式,将绿笔与 $^{\mathbf{V}}$ 端端子相连,黑表笔与 $^{\mathbf{COM}}$ 相连, $^{\mathbf{LCD}}$ 显示实时交流电压值。

5. 绝缘电阻测试

绝缘电阻测试只能在不带电的电路上进行,测试前请检查测试线路导线是否完好,及被测电路是否带电,线路带电可能会损坏仪表并且影响测量精度。

必须戴上高压绝缘手套操作。

绝缘电阻量程时,按测试开关后测试线头部和被测回路中产生高压,请 注意避免触摸。

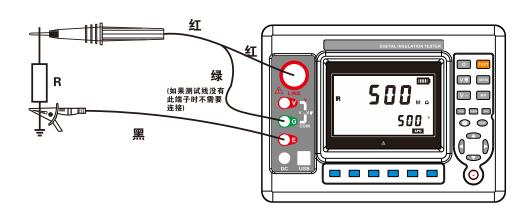
请务必将接地线(黑色)连接被测回路的接地端口。

测试以后请勿立刻触摸电路。存储的电荷可能导致触电事故。

请勿立刻取下测试线,必须等放电完成后再碰触被测回路。

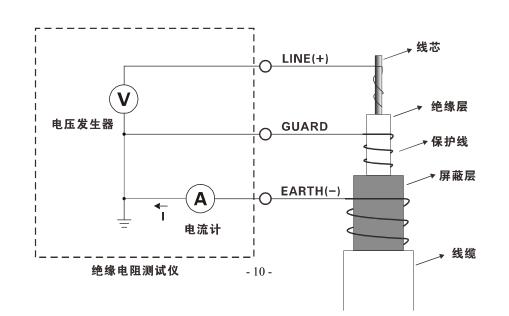
为了保证测量精度测试时不要把测试线缠绕在一起。

保证绝缘电阻精度的温湿度值


绝缘电阻范围 保证绝缘电阻精度的湿度值	保证绝缘电阻精度的温度值
---------------------	--------------

0Ω-100ΜΩ	<85% RH(无凝露)	
101ΜΩ-20GΩ	<75% RH(无凝露)	23°C±5°C
21G Ω-1000G Ω	<65% RH(无凝露)	

绝缘电阻测试只能在不带电的电路上进行,测试前应检查测试导线是否良好,确认被测回路是否带电。


按键切换到 Ω 档,然后按 $\overline{250V}$ 或 $\overline{500V}$ 或 $\overline{1KV}$ 或 $\overline{2.5KV}$ 或 $\overline{5KV}$ 或 $\overline{10KV}$ 键选择要过行测试的电压值。

接地线(黑)一端连接仪表连接 EARTH 端另一端连接被测回路接地端。高压棒测试线(红)一端连接仪表 LINE 端另一端头部接触被测电路,如果测试有绿色分线为屏蔽线,测试时连接 GUARD 端口精度更佳,如果配套测试线不带此线就不需要接,如图,按下 TEST 测试键(测试时仪表会发出间歇性蜂鸣:"滴^{*}滴^{*}滴..."的提示声)。LCD 显示测量值。测量后显示值固定不变后读取绝缘电阻值。

6. GUARD 保护线的使用

测量电缆的绝缘电阻时,覆盖表面的泄漏电流通过绝缘体内部与电流汇合,造成绝缘电阻值误差的产生。为避免此种现象的发生,如下图所示,使用保护线(任何导电性裸线)将泄漏电流流经部分卷起来,连接到保护端口后,泄漏电流不流过指示计,可准确测量绝缘体的绝缘电阻。请使用附件的保护测试线连接保护端口。

7. 极化指数(PI)和吸收比(DAR)

7.1 极化指数 (PI) 和吸收比 (DAR) 作用:

极化指数 (PI) 和吸收比 (DAR) 是检查绝缘体的泄漏电流的时间是否增加的试验。确认施加时间的同时泄漏电流没有增加。仪表自动计算极化指数 PI 和吸收比 DAR 值,作为判断绝缘性能的依据,极化指数 PI 和吸收比 DAR 都表示被测物承受测量电压后一段时间内绝缘电阻的变化情况。

7.2 极化指数 (PI) 和吸收比 (DAR) 区别:

对于一般的绝缘体测试,如外壳绝缘、工具手柄等一般在较短时间能测试出随施加电压时间增加漏电流是否增加情况,所以一般用较短时间的试验就能测试出来,短时间测试的绝缘电阻比值 DAR 称为吸收比(具体测试时间见下面公式),但对于大容量和吸收过程较长的被测品,如变压器、发电机、电缆、电容器等电气设备,有时吸收比值(DAR)尚不足以反映吸收的全过程,可采用较长时间的绝缘电阻比值,即 10 分钟时的绝缘电阻(R10min)与 1 分钟时的绝缘电阻(R1min)的比值 PI 来描述绝缘吸收的全过程,PI 称为极化指数,

PI 和 DAR 值通过下面的公式计算:

$$PI(极化指数)=$$
 $\frac{R10 \ Min}{R1 Min}$

$$DAR (吸收比) = \frac{R60 Sec}{R30 Sec}$$

注: 1: R10Min=电压施加 10 分钟测量的电阻值

- 2: R1Min=R60Sec=电压施加 1 分钟测量的电阻值
- 3: R30Sec=电压施加 30 秒测量的电阻值
- 4: R15Sec=电压施加 15 秒测量的电阻值
- 5: DAR 的计算时间可以选择 15 秒或 30 秒。

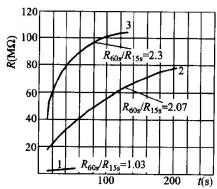
7.3 极化指数 (PI) 和吸收比 (DAR) 测试

极化指数(PI)和吸收比测试(DAR)只能在不带电的电路上进行,测试前应检查测试导线是否良好,确认被测回路是否带电。

将旋转开关转到 Ω 档,然后按 Ω 000 或 Ω 1000 或 Ω 1000 或 Ω 1000 数 Ω 1000 数 Ω 1000 数 Ω 1000 数

按 MODE 键设置相应模式,LCD 左下角显示"10:01m"为极化指数模式,显示

"60:15S"为吸收比模式 15 秒模式,显示"60:30S"为吸收比模式 30 秒模式,小数字不显示任何东西的为绝缘电阻测量模式。


接地线(黑)一端连接仪表连接 EARTH 端另一端连接被测回路接地端。高压棒测试线(红)一端连接仪表 LINE 端另一端头部接触被测电路,按下 TEST 测试键。LCD 显示测量值,测量后显示值固定不变后读取吸收比或者极化指数值。

待测试完成后按"▲"查看吸收比或者极化指数值的除数(比如"60:15S"模式下 60S 的值),按"▼"键查看吸收比或者极化指数值的被除数(比如"60:15S"模式下 15S 的值)。再次按按"▲"或"▼"键返回。

7.4 极化指数 (PI) 和吸收比 (DAR) 应用:

在工程上,绝缘电阻和吸收比(或极化指数)能反映发电机、油浸式电力变压器等设备绝缘的受潮程度。绝缘受潮后吸收比(或极化指数)值降低(如图 1),因此它是判断绝缘是否受潮的一个重要指标。

应该指出,有时绝缘具有较明显的缺陷(例如绝缘在高压下击穿),吸收比或极化指数值仍然很好。吸收比或极化指数不能用来发现受潮、脏污以外的其他局部绝缘缺陷。

1—干燥前 15℃; 2—干燥结束时 73.5℃; 3—运行 72h 后,并冷却至 27℃

图 1 某台发电机绝缘电阻 R 与时间 t 的关系

极化指数参考判定值:

极化指数	4以上	4~2	2.0~1.0	1.0以下
判定	最好	良好	要注意	不良

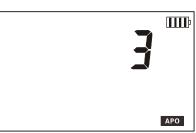
吸收比参考判定值:

吸收比	1.4以上	1.25~1.0	1.0以下
判定	最好	良好	不良

8. 背光控制

开机后,按"*****"键可以开启或关闭背光,背光功能适合于昏暗场所。每次 开机默认背光关闭。

9. 报警设置


开机后,长按" "键,开启、关闭报警功能。长按" MODE"键可以设置电阻报警值,通过按" ▲ "或" ▼ "键改变当前数字大小,再长按" MODE"键保存退出。当测量电压值大于报警临界设定值或者绝缘电阻值小于报警临界设定值并已开启报警功能,仪表闪烁" • 》)"符号,并发出"嘟一嘟一嘟一"报警声。电压报警设置最大值为 600V,绝缘电阻报警设置最大值为 9999M Ω。如下图:

10. 数据锁定/存储

开机后测量完成,短按"MEM"键锁定当前显示数据,并自动编号存储,若存储已满,仪表显示"FULL"符号。如下图:测量数据为 $1258M\Omega$,短按"MEM"显示存储为第 3 组数据。

11. 数据查阅/删除

开机后,如果仪表有保存的数据,短按"MR"键进入数据查阅,存储数据读取界面"MR"符号显示。短按"▲"或"▼"键以步进值为1选择查阅数组号对应数据,长按住"▲"或"▼"键以步进值为10选择查阅数组号,再按"MR"键退出查阅。见下图

查阅时下图中数字 3 为当前组数, 6 为总组数, 若无存储数据, LCD 显示"NULL", 见下图。

在数据查阅状态下,短按"CLEAR"键进入数据删除,按 NO 键不删除返回准备测量页面,按 YES 键删除所存数据,删除页面显示如下图。

八. 电池说明

仪表采用了 12.6V 锂电池供电, 当电池电量减少时, 当电压降到 10V 时, 电量符号" 显示,请及时充电电池。电压低电时影响测量准确度。

九. 装箱单

仪表	1台
高压棒	1 支红色
高压测试线	2条(黑色,绿色各1条)
监控软件光盘	1 份
USB 通讯线	1条
充电器	1 个
说明书、保用证	1 套
仪表箱	1 个